

SM	Other Energy conservation projects	Annual	Annual Savings	
214	other Energy conservation projects	MWh	MINR	
4	Operation of process pumps & fans linked with position of cabin into their zone.	159	1.11	
5	Spot repair machine frequency optimized from 50Hz to 40Hz during non working time	17	1.21	
6	ASU on/off controlled by a real time timer & shut off during non-working hours	206	1.44	
7	All process dip tanks level reduce by 200 mm in depth & saved LNG as heat load reduced	88 mMBTU/ annum	0.79 MINR/ annum	

	Other Energy concernation projects	Annual	Savings
	other Energy conservation projects	MWh	MINR
5	Sealer oven circ. Fan frequency optimized from 50Hz to 25Hz during Post Purge Time.	1.08	0.008
2	Working area ASU fan frequency optimized at low frequency according temperature.	121	0.85
3	Top coat ASU & Exhaust Fan Frequency optimized from 50 HZ to 25 Hz at break time .	59	0.41
4	ASRS Lighting on/off controlled by a real time timer & shut off during Day Time.	42	0.3

Innovation project 3 : Dip Skid Commonisation for PT-CED & Ro-Dip process					
Before – Different skid for di	ff. model	After - Com	mon skid for diff. models		
Image: A state of the stat	, need to el & takes	Common skid eliminate the times, & Savin	for 12 different models, adaptor plates fitment ng of 3.5 min in each cycle		
	Res	ults			
Saving	s		Investment		
89280 MWh/annum	10 MI	D /annum	0.128 MIND		
6048 mmBTU/annum	TO MIL	why drifturn	0.120 MINK		
			GD PRO 13		

EnCon. Project Description	Saving Potential	Saving Potential/annum	
	kWh	MINR	MINR
Energy efficient heating High COP Heat Pump on Axle washing machine eliminated electrical heating (225 kWt)	p s.) 757142	5.3	8.42
Energy efficient helical pump for bore well 11.2 kWh centrifugal pump replaced by Helical pump 3.7 kWh	14285	0.1	0.1
Compressor operation automation to eliminate unloading hours	23077	1.8	0.35

EnCon. Project Description		Saving Potential/annum		Investment
		kWh	MINR	MINR
Variable Frequency Drives : All the motors above 5.5 KW are now operated through VFD		<u>660000</u>	4.62	2.37
LED lights 3876 conventional lights replaced by energy efficient LED lights Phase 1 to 4 (2015-16 to 2017-18)	Power reduction Per fixture : - 250W to 80W - 36W to 18W etc 250 W 36 W	1197313	10.1	10.6

EnCon. Project Description		Saving Potential/annum		Invest- ment
		kWh	MINR	MINR
Modification in pneumatic valve actuation system At CED paint shop, compressor is now switched –off during non working hours	Bypass line with valve stop compressor running during non working hours	36285	0.254	0.036
High COP heat pump eliminated electrical heating for dish washer at canteen	Canteen heat pump system	20000	0.14	0.3
AC converter operates two air conditioners with one out door unit		1857	0.013	0.024

EnCon. Project Description	Sav Potentia	Saving Potential/annum	
	kWh	MINR	MINR
Day light harvesting 210 nos. roof sheets are replaced by transparent poly carbonate sheets	171429	1.2	1.17
Solar hybrid AC Hybrid AC made of Solar collectors which superheats the refrigerant & thereby reduce energy use	9072	0.063	0.165
Air cooler at CMS2 building Evaporative air cooler has high efficiency then Centralized cooling system (ASU) Evaporative UKKOMF @	485714+	3.4+	5+

EnCon. Project Description	Sav Potentia	ing I/annum	n Investment	
	kWh	MINR	MINR	
Nano-fluid for compressor Use of POLYTRON MTC – Oil Additive into compressor to improve compressor efficiency	27648	0.19	0.045	
Nano-fluid for chiller Improvement in heat transfer by use of Nano fluid (Hydromx) at Cab weld cooling system	35714	0.25	0.51	
Variable Refrigerant flow A/C installed energy efficient VRF AC instead of DX AC unit at new ME office	VRF A/C Unit	0.26	1.5	
TE COMMERCIAL VEHICLES		EICHER	GD PRD	

EnCon. Project Description		Savi Potential	Saving Potential/annum	
		kWh	MINR	MINR
Compressor Heat Recovery system Successfully installed heat recovery system on compressor to generate hot water from exhaust hot air & reuse at washing m/c	Sciencia Hi last ration science in History science in History s	3128 <mark>4</mark> 0	2.19	2.3
Indoor nature switch for highbay lights Successfully trail taken of in-door lux sensor for gangway lights(24 nos.), Automatic switch on at low lux level & Automatic switch off at required lux level	Light Control by Nature Switch	2304	0.016	0.0165

Other Process improvement projects	Saving Potential/annan	Investmen
LT Room energy meter Installation Installed efficient & common energy meter at main LT room for effective power monitoring	It improves right collection with s energy meter with compatible to an send data remot	t data ame type of hich is also utomatically tely
LED lights installations in 2018-19 YTD total 275 nos. In all new projects installed LED overhead & process Tube lights	248271 1.74	1.95

EnCon. Pr	oject Description	Saving Potential/	annam	Investment
LNG conservation by Reuse of waste heat by heat pipe on ED & Top coat Oven at CED Paint shop	Heat Recovery system	5799 mMBTU	5.04 MINR	4.8 MINR
Burner efficiency improvement by streamlining LNG flow at CED Paint shop	LNG molecules gap increases after passes through flux maxiox device	929 mMBTU	0.7 MINR	0.45 MINR
Hot exhaust air for HWG Compressor exhaust use on Hot water generator to preheat the suction air before combustion		639.36 mMBTU	0.53 MINR	0.023 MINR

En	ergy Conservation Projects - Zero inves	tment proje	cts (2015-18)	
No	Title of Project	Year	Annual Electrical Saving (kWh)	Total Annual Savings (Rs million)
1	Robotic Paint booth- re-program VFD for blower & install VFD on pump.	2015-16	66154	0.43
2	Manuel switching off(air cooler, lights, fans etc)	2015-16	147692	0.96
3	Hydel Power purchase	2016-17	1647226	3.85
4	Manual switching off(air cooler, lights, fans etc)	2016- 17	155714	1.09
5	Operation of process pumps & fans linked with position of cabin into their zone.	2017-18	158571	1.11
6	Spot repair machine frequency optimized from 50Hz to 40Hz during non working time	2017-18	172857	1.21
			C= EICHI	ER GD PRO

En	Energy Conservation Projects - Zero investment projects (2015-18)					
No	Title of Project	Year	Annual Electrical Saving (kWh)	Total Annual Savings (Rs million)		
7	ASU on/off controlled by a real time timer & shut off during non-working hours	2017-18	205714	1.44		
8	Work deck ASU speed control with temperature & humidity in Day/night. (Consider 4 <u>hr</u> motors run in 50% frequency so 232+200 units will be saved)	2017-18	121429	0.85		
9	Optimization of Top coat Booth ASU supply & Exhaust blowers running interlock with cabin sensing. (132 Kw -02 blowers will be saved at least 03 <u>hr</u> at low frequency)	2017-18	58571	0.41		
10	Zero investment EnCon project - Thermal	2017-18	88 mMBTU	0.07		
	Total Zero Investment Savings (MINR) 11.					

CNI	Title of Droject	Annual	Investment	
SIN		Kwh	MINR	MINR
1	Plant cooling tower (10 nos.) fan operation - control by temp. controller	143590	0.93	0.056
2	Replacement of conventional lights by energy efficient LED lights	147692	0.96	1.26
3	Automation in street lights	43446	0.28	0.035
4	EDC Utilities- Cooling tower pipe line modification & pumps interlocking	446154	2.90	0.14
5	Arrest compressed air leakages in plant	258462	1.68	0.12
6	VFD installed in 1000 cfm compressor	125538	0.82	0.025
7	Engine test Beds-Integration of exhaust blower with engine test cycle	25846	0.17	0.05
8	<u>Automationin</u> ADU (air dryer units) at shop floor	153231	1.00	0.14
9	VFD installed in 200 cfm compressor at Paint shop	27692	0.18	0.3

CNI	Title of Droject	Annua	Investment	
SIN	The of Project	Kwh	MINR	MINR
10	Machine shop Air Line Seperation	332308	2.16	0.25
11	Heat recovery system for ED oven in paint shop- LNG saving	0	2.16	2.4
12	Energy conservation by VFD installation on paint shop pumps & compressor	20769	1.62	0.48
13	HVAC booth pump replaced (0.75 kw to 0.37 KW,6 <u>nos</u>)	1538	0.12	0.03
14	Plant LED Light conversion Total 3184 nos. LED lights installed	582335	5.89	6.47
15	Energy conservation by VFD installation on plant pumps, compressor & blowers as horizontal implementation of energy savings	22106	1.72	1.12
16	Heat Pump in Axle line washing machine	15385	1.20	1.18
17	Compressor Automation	23077	1.80	0.35
18	AC convertor at <u>Rlab</u> Air conditioner	209	0.02	0.02

Lis	t – Energy Conservation projects (2015 -18)			
SN	Title of Project	Annual	Investment	
514	The of Project	Kwh	MINR	MINR
19	Helical Pump on <u>borewell</u> no. 06	1282	0.10	0.1
20	Heat recovery system for Top coat oven in paint shop- LNG saving	0	3.00	2.4
21	Energy conservation by VFD installation on paint shop pumps & compressor	231429	1.62	0.48
22	Energy efficient Air cooler at CMS2 building– 78 nos.	485714	3.40	5
23	Modification in pneumatic valve actuation system	36285	0.25	0.036
24	Heat Pump in Axle line washing machine phase-2	575714	1.69	3.35
25	Plant LED light conversion	467286	3.27	2.934
26	Flux maxiox system on Oven LNG pipeline	0	0.72	0.45
27	30 kVA Solar plant at CMS2	44902	0.31	1.5
			C= EICHER	GD PRO

	Ene	rgy Consu	mption per	unit of prod	duction	
KPI	2014-15	2015-16	2016-17	2017-18	Target 2018-19	Benchmarking
Variable power (KWh/Vehicle)	576	518	459	460	450	995 (Nearest competitor)
Water (m3/Vehicle)	8.57	8.28	6.45	6.15	6.12	NA
LNG (mMBTU/Vehicle)	1.32	1.22	0.97	0.98	0.95	2.2 Durr (OEM)
Sp. Lifergy c	8000 - 7000 - 6000 - 5000 -	7184	01/29		Globel	Remark Benchmarking is very difficult as plant to
3enchmarking kWh/vehicle 🏓	4000 - 3000 - 2000 - 1000 - 0	2014-15	1015-16 2016-	17 2017-18		product, outsourcing is different.

Comparison with Energy saving budget allocation						
Description	2014-15	2015-16	2016-17	2017-18	2018-19	
Budget (MINR)	2.6	3	33	10	10	
Power bill (MINR)	241	269	214	269	306	
Budget (%)	1.08%	1.12%	15.42%	3.72%	3.27%	

VE COMMERCIAL VEHICLES

.....

C = EICHER GD PRO

28

Ise of waste as Alternate Fuel/Raw Material						
S N	Details of Project	Year	% of waste disposed as alternate fuel / raw material			
1	Exhaust fumes of ED oven reused as fuel & preheat the oven fresh air	2015	Total 2485 mMBTU LNG as fuel saved & total 2.16 MINR cost savings achieved			
2	Exhaust fumes of Top coat oven reused as fuel & preheat the oven fresh air	2016	Total 3314 mMBTU LNG as fuel saved & total 2.88 MINR cost savings achieved			
3	Solvent recycling	2016	100% used solvent recycling			
4	Food waste conversion in compost	2016	20% Food waste conversion into manure			
5	M/C shop washing m/c filter paper Reuse Of Filter Press cloths	2017	100% filter clothes are reused for chips segregation.			
6	Use of compressor waste heat as fuel to generate hot water for axle line	2017	Total 312840 Kwh electricity & Total 2.19 MINR cost savings per annum generated			

